• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Motion Control Tips

Automation • Motion Control • Power Transmission

  • News
    • Industry News
    • Editor Blogs
    • Video
  • Controls
    • HMIs
    • PC-Based Controllers
    • PLCs + PACs
    • Stand-Alone Controllers
    • Software
  • Drives
    • Servo Drives
    • Stepper Drives
  • Encoders
    • Absolute Encoders
    • Incremental Encoders
    • Rotary Encoders
  • Mechanical
    • Bearings
    • Brakes + Clutches
    • Belt + chain
    • Couplings
    • Gears + Gearing
    • Lubrication
    • Shock + Vibration Mitigation
    • Springs + Rings + Seals
  • Linear
    • Actuators
    • Linear Motors
    • Linear Encoders
  • Motors
    • AC Motors
    • DC Motors
    • Brushless Motors
    • Gearmotors
    • Piezo Motors
    • Servo Motors
    • Stepper Motors
  • Systems
    • Conveyors + linear transport systems
    • Gantries + Stages
    • Rotary Tables
    • Grippers + End Effectors
    • Robotics
  • Networks
    • Connections + Sliprings
    • Fieldbuses
    • I/O
    • Sensors + Vision
  • FAQs
    • Motion Casebook
    • Motion Selection Guides
  • Suppliers
You are here: Home / Controls / New compact stepper motor controller boasts 2,048 microstep resolution

New compact stepper motor controller boasts 2,048 microstep resolution

May 4, 2017 By Miles Budimir Leave a Comment

PI (Physik Instrumente) has released a higher performance model of its successful Mercury Stepper Motion controller. Stepper motors take up discrete positions in a revolution of a constant distance. Typical commercial models provide 200 to 1,000 full steps per revolution. Designed to deliver more than 2,000 times the basic motor resolution, the C-663.12 Mercury controller is the newest addition to PI’s suite of motion control solutions. controller

PI’s compact C-663.12 motion controller is designed for 2-phase stepper motors, in open-loop or closed-loop operation commanded by USB or RS-232. Up to 16 units can be combined via daisy chain to operate multi-axis motion systems. The Mercury controller includes a 48-V wide-range-input power supply, and all cables required for operation. Programmable digital and analog I/O lines and input lines for limit and reference point switches controlled via TTL signals are also integrated.

The C-663.12 is equipped with a data recorder for high speed tracing, ID chip compatibility for quick start-up and on-the-fly parameter changes, and exchange of system components without recalibration. The controllers are delivered with extensive software packages, including drivers for LabVIEW, as well as dynamic libraries for Windows and Linux.

For more information, visit www.pi-usa.us.

 

You may also like:


  • Industrial IoT for updating the dated — B&R Orange Box…

  • Motion controllers see major shifts in design thanks to IoT,…
  • controllers
    Motion controller for linear and rotary air bearing stages from…
  • stepper motors
    Stepper motors excel in unique conveying application
  • stepper motor drive
    Advanced stepper motor drive designed for hazardous locations

Filed Under: Controls

Reader Interactions

Leave a Reply

You must be logged in to post a comment.

Primary Sidebar

POWER TRANSMISSION REFERENCE GUIDE

DESIGN GUIDE LIBRARY

“motion
Subscribe Today

RSS Featured White Papers

  • Specifying electric rodless actuators: Ten tips for maximizing actuator life and system performance
  • The truth about actuator life: Screw drive survival
  • Top Ten Tips: How to specify electric rod-style actuators for optimal performance, reliability and efficiency

Footer

Motion Control Tips

DESIGN WORLD NETWORK

Design World Online
The Robot Report
Coupling Tips
Linear Motion Tips
Bearing Tips
Fastener Engineering.

MOTION CONTROL TIPS

Subscribe to our newsletter
Advertise with us
Contact us
About us
Follow us on TwitterAdd us on FacebookAdd us on LinkedInAdd us on YouTubeAdd us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy | RSS