• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Advertise
  • Subscribe

Motion Control Tips

Automation • Motion Control • Power Transmission

  • News
    • Industry News
    • Editor Blogs
  • Controls
    • HMIs
    • PC-Based Controllers
    • PLCs + PACs
    • Stand-Alone Controllers
    • Software
  • Drives
    • Servo Drives
    • Stepper Drives
  • Encoders
    • Absolute Encoders
    • Incremental Encoders
    • Rotary Encoders
  • Mechanical
    • Bearings
    • Brakes + Clutches
    • Belt + chain
    • Couplings
    • Gears + Gearing
    • Lubrication
    • Shock + Vibration Mitigation
    • Springs + Rings + Seals
  • Linear
    • Actuators
    • Linear Motors
    • Linear Encoders
  • Motors
    • AC Motors
    • DC Motors
    • Brushless Motors
    • Gearmotors
    • Piezo Motors
    • Servo Motors
    • Stepper Motors
  • Systems
    • Conveyors + linear transport systems
    • Gantries + Stages
    • Rotary Tables
    • Grippers + End Effectors
    • Robotics
  • Networks
    • Connections + Sliprings
    • Fieldbuses
    • I/O
    • Sensors + Vision
  • Resources
    • FAQs
      • Motion Casebook
      • Motion Selection Guides
    • Suppliers
    • Video
You are here: Home / FAQs + basics / What are proximity sensors?

What are proximity sensors?

February 1, 2019 By Miles Budimir Leave a Comment

Proximity sensors are used across a broad range of industrial and manufacturing applications. They’re used to sense the presence of objects or materials and then either initiate some action or simply flag their presence or absence. Key to their operation is that they don’t require physical contact with the target or object being sensed. This is why they’re often called non-contact sensors.

ultrasonic sensors
Ultrasonic sensors like these from Banner use sound waves rather than light making them suitable for detection of uneven surfaces, liquids, and clear objects, especially in dirty environments.

There are a number of common sensing techniques employed in proximity sensors. These techniques serve to categorize sensor types in addition to other ways such as the material to be detected or the environmental conditions best suited for that sensor type.

The most common types of proximity sensors are briefly described below:

Capacitive – as the name indicates, these sensors operate by noting a change in the capacitance, capacitance being a function of both electrical charge and voltage between two surfaces with either an air gap or some other material between them, which is the dielectric constant. When an object to be detected enters the field of the sensor, it effects the dielectric and thus changes the capacitance, which is sensed as a change.

Inductive – these types of sensors are based on changing inductance, which is a measure of the ability of inducing a voltage in a conductor as a result of a changing current in a different conductor. Inductive sensors work with metallic objects because these have inductive properties, so can’t be used to detect plastic, for instance.

Also, the type of material sensed will influence the sensing distance. For example, ferromagnetic materials like steel generally have the longest sensing distances, whereas other metals such as aluminum or copper have much shorter sensing distances.

Photoelectric – these sensors operate on the basis of light, dependent on a change in the amount of light available to a detector in the sensor. There are two basic types of photoelectric sensor; reflective, and through-beam. Reflective sensors work by emitting a beam of light that strikes the object and is reflected back to the detector, usually in the same physical housing as the emitter beam. Through-beam sensors, on the other hand, have two separate units, an emitter or source of light and a separate receiver or detector. When an object breaks the light beam, the detector registers this break.

Ultrasonic – these sensors use sound waves to detect objects. They emit a high frequency sound wave (higher than human ears can detect) and when it strikes an object it’s reflected back to the sensor where the distance of the object can be calculated based on the time required for it to return. They’re used in applications to measure distance of objects, such as in automotive park-assist functions, and in bottling and filling applications to detect fluid levels.

Upcoming posts will look at each type of proximity sensor in greater detail.

 

You Might Also Like

Filed Under: FAQs + basics, Sensors + Vision

Reader Interactions

Leave a Reply

You must be logged in to post a comment.

Primary Sidebar

LEARNING CENTER

Design World Learning Center

Motion Control Handbook

“mct
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.

RSS Featured White Papers

  • Robotic Automation is Indispensable for the Logistics Industry’s Continued Growth and Success
  • Reliable Linear Motion For Packaging Machines
  • Polymers Outperform Metals In Precision Gearing

Footer

Motion Control Tips

DESIGN WORLD NETWORK

Design World Online
The Robot Report
Coupling Tips
Linear Motion Tips
Bearing Tips
Fastener Engineering.
Wire and Cable Tips

MOTION CONTROL TIPS

Subscribe to our newsletter
Advertise with us
Contact us
About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy | RSS