• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Motion Control Tips

Automation • Motion Control • Power Transmission

  • News
    • Industry News
    • Editor Blogs
    • Video
  • Controls
    • HMIs
    • PC-Based Controllers
    • PLCs + PACs
    • Stand-Alone Controllers
    • Software
  • Drives
    • Servo Drives
    • Stepper Drives
  • Encoders
    • Absolute Encoders
    • Incremental Encoders
    • Rotary Encoders
  • Mechanical
    • Bearings
    • Brakes + Clutches
    • Belt + chain
    • Couplings
    • Gears + Gearing
    • Lubrication
    • Shock + Vibration Mitigation
    • Springs + Rings + Seals
  • Linear
    • Actuators
    • Linear Motors
    • Linear Encoders
  • Motors
    • AC Motors
    • DC Motors
    • Brushless Motors
    • Gearmotors
    • Piezo Motors
    • Servo Motors
    • Stepper Motors
  • Systems
    • Conveyors + linear transport systems
    • Gantries + Stages
    • Rotary Tables
    • Grippers + End Effectors
    • Robotics
  • Networks
    • Connections + Sliprings
    • Fieldbuses
    • I/O
    • Sensors + Vision
  • FAQs
    • Motion Casebook
    • Motion Selection Guides
  • Suppliers
You are here: Home / Drives + Supplies / Stepper Drives / FAQ: What is microstepping?

FAQ: What is microstepping?

December 30, 2016 By Zak Khan Leave a Comment

Microstepping is driving a stepper motor at less the one full step per movement. Under usual operating conditions, a stepper motor operates by turning one full step with every pulse of current. Microstepping allows a motor to make far finer steps. This done by having the controller and drive send the proper kinds of current pulses to the stepper motor.

A microstepping drive does not send a full pulse of current to the stepper motor to make it move. Rather various algorithms developed by manufacturers allow the drives to send only partial pulses to the stepper motor. As a result, the motor spin only a fraction of a step. Usual values of microstepping are 16 to 64 microsteps per one full step. For a 1.8° stepper motor, this makes for steps from 0.1124° to 0.028°.

Note that this value is theoretical. In practical applications, stepper motors do not get more accurate merely through the use of microstepping. Steps will still have error inherit because of the construction of the stepper motor. What microstepping is good for, then, is creating smooth, even motion. Read FAQ: How do stepper drives and motors get smooth motion and consistent torque at low speed? for more on this. More after the jump.

Stepper motors and their associated drivesfrom Oriental Motor can microstep. These get resolutions down to 0.1125° per microstep.

What microstepping drives do is send current to the motor as stepped sine waves. The steps in the sine wave pattern are the individual microsteps and the whole wavelength is a pulse that turns the motor one full step. This method of operation means the drive must be capable of outputting small bursts of current continuously.

Manufacturers have created a variety of ways of doing this, so be sure to check documentation to find out which method the drive in question uses.

Note that variable-reluctance stepper motors cannot be driven with microstepping. Their construction techniques prevent the possibility, no matter what kind of drive is used. But permanent-magnet and hybrid steppers can be microstepped. For more information, read Micromo’s article: Microstepping Myths and Realities.

You may also like:


  • FAQ: What drive conditions make stepper motors run poorly?

  • FAQ: What kind of torque can I get out of…

  • Minimizing stepper motor vibration with affordable technology

  • How clean power, shared bus make motion drives efficient
  • hybrid-servomotor
    The hybrid servomotor: stepping up to closed loop

Filed Under: FAQs + basics, Stepper Drives, Stepper Motors

Reader Interactions

Leave a Reply

You must be logged in to post a comment.

Primary Sidebar

POWER TRANSMISSION REFERENCE GUIDE

DESIGN GUIDE LIBRARY

“motion
Subscribe Today

RSS Featured White Papers

  • Specifying electric rodless actuators: Ten tips for maximizing actuator life and system performance
  • The truth about actuator life: Screw drive survival
  • Top Ten Tips: How to specify electric rod-style actuators for optimal performance, reliability and efficiency

Footer

Motion Control Tips

DESIGN WORLD NETWORK

Design World Online
The Robot Report
Coupling Tips
Linear Motion Tips
Bearing Tips
Fastener Engineering.

MOTION CONTROL TIPS

Subscribe to our newsletter
Advertise with us
Contact us
About us
Follow us on TwitterAdd us on FacebookAdd us on LinkedInAdd us on YouTubeAdd us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy | RSS