• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Advertise
  • Subscribe

Motion Control Tips

Automation • Motion Control • Power Transmission

  • News
    • Industry News
    • Editor Blogs
  • Controls
    • HMIs
    • PC-Based Controllers
    • PLCs + PACs
    • Stand-Alone Controllers
    • Software
  • Drives
    • Servo Drives
    • Stepper Drives
  • Encoders
    • Absolute Encoders
    • Incremental Encoders
    • Rotary Encoders
  • Mechanical
    • Bearings
    • Brakes + Clutches
    • Belt + chain
    • Couplings
    • Gears + Gearing
    • Lubrication
    • Shock + Vibration Mitigation
    • Springs + Rings + Seals
  • Linear
    • Actuators
    • Linear Motors
    • Linear Encoders
  • Motors
    • AC Motors
    • DC Motors
    • Brushless Motors
    • Gearmotors
    • Piezo Motors
    • Servo Motors
    • Stepper Motors
  • Systems
    • Conveyors + linear transport systems
    • Gantries + Stages
    • Rotary Tables
    • Grippers + End Effectors
    • Robotics
  • Networks
    • Connections + Sliprings
    • Fieldbuses
    • I/O
    • Sensors + Vision
  • Resources
    • FAQs
      • Motion Casebook
      • Motion Selection Guides
    • Suppliers
    • Video
You are here: Home / FAQs + basics / What are inductive proximity sensors?

What are inductive proximity sensors?

April 5, 2019 By Miles Budimir Leave a Comment

Proximity sensors are commonly used in many automation applications. They’re used to sense the presence of objects and don’t require physical contact with the target or object being sensed, which is why they’re often referred to as non-contact sensors. Common proximity sensor types include photoelectric, capacitive, and inductive sensors.

 

sensors
The operation of a typical inductive proximity sensor is shown here. The oscillator generates an electromagnetic field that radiates out from the sensing face, inducing eddy currents in nearby metallic objects. This causes a change in the oscillation amplitude that triggers a change in the output state. (Illustration via Baumer)

Inductive sensors operate on the basis of Faraday’s Law. One way to state Faraday’s Law is that a change in magnetic flux in a coil of wire will induce a voltage in a nearby coil. This is applied in inductive proximity sensors in the following way: The sensor itself contains an oscillator circuit and a coil from which an electromagnetic field radiates out and induces eddy currents in any nearby metallic objects. The eddy currents have the effect of attenuating the oscillations from the amplifier. This reduction in oscillations is registered as the presence of a metallic object.

Because only metallic objects have inductive properties, inductive sensors can’t be used to detect plastic or cardboard or other non-metallic objects. However, different metals have different inductive properties and the type of metal being sensed will influence the sensing distance. For instance, ferromagnetic materials like steel generally have the longest sensing distance, while non-ferrous metals such as aluminum or copper have much shorter sensing distances. In general, inductive proximity sensors are well suited to shorter-range applications as the inductive effect wears off with growing distance between the sensor and object to be detected.

sensors
Miniature inductive proximity sensors, like the IFRM 03 Short family from Baumer, feature a 3-mm diameter and come in 12 or 16-mm lengths. The sensors are designed for tight spaces where standard proximity sensors can’t fit.

Inductive proximity sensors hold up well in dirty environments where contaminants don’t interfere with the sensor’s ability to detect metallic objects. For example, they’re resistant to dirt, dust, and smoke in the environment between the sensor and the object to be detected. As for build-up of contaminants on the sensor face such as dirt and dust, oil, grease or soot, these don’t effect the inductive sensing. However, metallic contaminants such as metal chips in machining applications will impact sensor operation. The key is to be sure to understand what type of contaminants an application contains in order to select the correct type of sensor that can handle them and operate effectively.

 

You Might Also Like

Filed Under: FAQs + basics, Sensors + Vision

Reader Interactions

Leave a Reply

You must be logged in to post a comment.

Primary Sidebar

LEARNING CENTER

Design World Learning Center

Motion Control Handbook

“mct
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.

RSS Featured White Papers

  • Robotic Automation is Indispensable for the Logistics Industry’s Continued Growth and Success
  • Reliable Linear Motion For Packaging Machines
  • Polymers Outperform Metals In Precision Gearing

Footer

Motion Control Tips

DESIGN WORLD NETWORK

Design World Online
The Robot Report
Coupling Tips
Linear Motion Tips
Bearing Tips
Fastener Engineering.
Wire and Cable Tips

MOTION CONTROL TIPS

Subscribe to our newsletter
Advertise with us
Contact us
About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy | RSS