• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Advertise
  • Subscribe

Motion Control Tips

Automation • Motion Control • Power Transmission

  • News
    • Industry News
    • Editor Blogs
  • Controls
    • HMIs
    • PC-Based Controllers
    • PLCs + PACs
    • Stand-Alone Controllers
    • Software
  • Drives
    • Servo Drives
    • Stepper Drives
  • Encoders
    • Absolute Encoders
    • Incremental Encoders
    • Rotary Encoders
  • Mechanical
    • Bearings
    • Brakes + Clutches
    • Belt + chain
    • Couplings
    • Gears + Gearing
    • Lubrication
    • Shock + Vibration Mitigation
    • Springs + Rings + Seals
  • Linear
    • Actuators
    • Linear Motors
    • Linear Encoders
  • Motors
    • AC Motors
    • DC Motors
    • Brushless Motors
    • Gearmotors
    • Piezo Motors
    • Servo Motors
    • Stepper Motors
  • Systems
    • Conveyors + linear transport systems
    • Gantries + Stages
    • Rotary Tables
    • Grippers + End Effectors
    • Robotics
  • Networks
    • Connections + Sliprings
    • Fieldbuses
    • I/O
    • Sensors + Vision
  • Resources
    • FAQs
      • Motion Casebook
      • Motion Selection Guides
    • Suppliers
    • Video
You are here: Home / Mechanical PT / How to size and select belts and pulleys: An Engineer’s Guide

How to size and select belts and pulleys: An Engineer’s Guide

August 24, 2012 By Lisa Eitel Leave a Comment

Updated May 2016 || Industrial belt drives consist of rubber belts that wrap around drive pulleys, in turn driven by electric motors. In a typical setup, the belt also wraps around one or more idler pulleys that keep the belt taut and on track. More after the jump.

1-belts-ContiTech-monitoring
This setup has an electronic warning system from ContiTech to alert operators when a conveyor is elongating or at risk of ripping. Called CONTI PROTECT and most useful on industrial and mining conveyors, the system uses magnetic markings on the belts to track irregularities in the splice length and detects longitudinal rips before they grow. Such monitoring systems are just one example of how belt-drive technologies have kept pace with 21st-century design concepts.

 

The main reasons that engineers pick drives with belts and pulleys over other options is that modern varieties require little if no maintenance; they’re less expensive than chain drives; and they’re quiet and efficient, even up to 95% or more.

2B-belts-Gates-sprockets-carbon-reinforcementIn addition, the tensile members of today’s belts—cords embedded into the belt rubber that carry the majority of the belt load—are stronger than ever. Made of polyester, aramid, fiberglass or carbon fiber, these tensile cords make today’s belt drives thoroughly modern power-transmission devices.

2A-belts-Gates-carbon-fiber-innovation
Shown here is a Gates Carbon Drive CDN system—lower in cost for new bike applications. It leverages new materials and geometries, with nine carbon cords embedded within engineered polymer belt and an 11-mm tooth pitch profile for lower tension. It replaces chain drives.

Manufacturers generally describe belts and pulleys with five main geometries. Pitch diameter is the drive pulley’s diameter. Center distance is the distance between the two pulleys’ centers. Minimum wrap angle is a measure of how much the belt wraps around the smallest pulley. Belt length is how long the belt would be if cut and laid flat. Finally, in the case of toothed belts (also called synchronous belts) the pitch is the number of teeth per some length—so a 3-mm pitch means that the belt has one tooth every 3 mm, for example.

How to apply
synchronous belts

Some general guidelines are applicable to all timing belts, including miniature and double-sided belts. First of all, engineers should always design these belt drives with a sufficient safety factor—in other words, with ample reserve horsepower capacity. Tip: Take note of overload service factors.

Belt ratings are generally only 1/15 of the belt’s ultimate strength. These ratings are set so the belt will deliver at least 3,000 hours of useful life if the end user properly installs and maintains it. The pulley diameter should never be smaller than the width of the belt. More after the jump.

Shown here are timing belts, timing-belt pulleys, and Fairloc hubs from Stock Drive Instruments/Sterling Instrument (SDP/SI). The company specializes in these power-transmission components; its Fairloc hub is a particularly unique offering in that it centers shafts and keeps mounted pulleys perfectly aligned.

As mentioned, belts are quieter than other power-transmission drive options … but they’re not silent. Noise frequency increases proportionally with belt speed, and noise amplitude increases with belt tension. Most belt noise arises from the way in which belt teeth entering the pulleys at high speed repeatedly compresses the trapped pockets of air. Other noise arises from belt rubbing against the flange; in some cases, this happens when the shafts aren’t parallel.

More after the video.

6-Dura-Belt-powered-rollers
Shown here are Dura-Belt powered rollers, which are designed to transmit power and convey loads. Their round polyurethane belts can carry more load than comparable rubber belts.

Pulleys are metal or plastic, and the most suitable depends on required precision, price, inertia, color, magnetic properties and the engineer’s preference based on experience. Plastic pulleys with metal inserts or metal hubs are a good compromise.

Tip: Make at least one pulley in the belt drive adjustable to allow for belt installation and tensioning. Also note that in a properly designed belt drive, there should be a minimum of six teeth in mesh and at least 60° of belt wrap around the drive pulley. Other tips:

• Pretension belts with the proper recommended tension. This extends life and prevents belt ratcheting or tooth jumping.

• Align shafts and pulleys to prevent belt-tracking forces and belt edge wear. Don’t crimp belts beyond the smallest recommended pulley radius for that belt section.

• Select the appropriate belt for the design torque.

• Select the appropriate belt material for the environment (temperature, chemical, cleaning agents, oils and weather). Belt-and-pulley systems are suitable for myriad environments, but some applications need special consideration. Topping this list are environmental factors. More after the jump.

5-Dorner-2200-Timing-Belt-integrated-drive
This conveyor—a Dorner 2200—uses an integrated timing-belt drive to accurately move hundreds of pounds of product at hundreds of feet per minute. It leverages the main benefit of timing belts, which is precise moves.

Dusty environments do not generally present serious problems as long as the particles are fine and dry. In contrast, particulate matter can act as an abrasive and accelerates belt and pulley wear. Debris should be prevented from falling into belt drives. Debris caught in the drive is generally either forced through the belt or makes the system stall. In either case, serious damage occurs to the belt and related drive hardware.

Shown here are Baldor-Maska sheaves for V-belt drives, also called friction drives for the way they operate. Minimum allowable sheave diameter depends on the belt shape and material, whether that’s synthetic, neoprene, urethane or rubber.
Shown here are Baldor-Maska sheaves for V-belt drives, also called friction drives for the way they operate. Minimum allowable sheave diameter depends on the belt shape and material, whether that’s synthetic, neoprene, urethane or rubber.

Light and occasional contact with water—during occasional washdowns, for example—has little serious effect. However, prolonged contact with constant spray or submersion can significantly reduce tensile strength in fiberglass belts and make aramid belts break down and stretch out. In the same way, occasional contact with oils doesn’t damage synchronous belts. But prolonged contact with oil or lubricants, either directly or airborne, significantly reduces belt service life. Lubricants cause the rubber compound to swell, break down internal adhesion systems and reduce felt tensile strength. While alternate rubber compounds may provide some marginal improvement in durability, it’s best to prevent oil from contacting synchronous belts.

The presence of ozone can be detrimental to the compounds used in rubber synchronous belts. Ozone degrades belt materials in much the same way as excessive temperatures. Although the bumper materials used in belts are compounded to resist the effects of ozone, eventually chemical breakdown occurs and they become hard and brittle and begin cracking. The amount of degradation depends on the ozone concentration and generation of exposure.

Rubber belts aren’t suitable for cleanrooms, as they risk shedding particles. Instead, use urethane timing belts here … keeping in mind that while urethane belts make significantly less debris, most can carry only light loads. Also, none have static conductive construction to dissipate electrical charges.

You Might Also Like

Filed Under: Mechanical PT, Motion Selection Guides Tagged With: Dorner, Gates, SDP-SI (Stock Drive Products)

Reader Interactions

Leave a Reply

You must be logged in to post a comment.

Primary Sidebar

LEARNING CENTER

Design World Learning Center

Motion Control Handbook

“mct
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.

RSS Featured White Papers

  • Robotic Automation is Indispensable for the Logistics Industry’s Continued Growth and Success
  • Reliable Linear Motion For Packaging Machines
  • Polymers Outperform Metals In Precision Gearing

Footer

Motion Control Tips

DESIGN WORLD NETWORK

Design World Online
The Robot Report
Coupling Tips
Linear Motion Tips
Bearing Tips
Fastener Engineering.
Wire and Cable Tips

MOTION CONTROL TIPS

Subscribe to our newsletter
Advertise with us
Contact us
About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy | RSS