• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Advertise
  • Subscribe

Motion Control Tips

Automation • Motion Control • Power Transmission

  • News
    • Industry News
    • Editor Blogs
  • Controls
    • HMIs
    • PC-Based Controllers
    • PLCs + PACs
    • Stand-Alone Controllers
    • Software
  • Drives
    • Servo Drives
    • Stepper Drives
  • Encoders
    • Absolute Encoders
    • Incremental Encoders
    • Rotary Encoders
  • Mechanical
    • Bearings
    • Brakes + Clutches
    • Belt + chain
    • Couplings
    • Gears + Gearing
    • Lubrication
    • Shock + Vibration Mitigation
    • Springs + Rings + Seals
  • Linear
    • Actuators
    • Linear Motors
    • Linear Encoders
  • Motors
    • AC Motors
    • DC Motors
    • Brushless Motors
    • Gearmotors
    • Piezo Motors
    • Servo Motors
    • Stepper Motors
  • Systems
    • Conveyors + linear transport systems
    • Gantries + Stages
    • Rotary Tables
    • Grippers + End Effectors
    • Robotics
  • Networks
    • Connections + Sliprings
    • Fieldbuses
    • I/O
    • Sensors + Vision
  • Resources
    • FAQs
      • Motion Casebook
      • Motion Selection Guides
    • Suppliers
    • Video
You are here: Home / Motors / Brushless Motors / Brushless dc motors for industrial power tools: Comparison of options including slotless motor variations

Brushless dc motors for industrial power tools: Comparison of options including slotless motor variations

June 5, 2018 By Lisa Eitel Leave a Comment

Industrial power tools have operating profiles that differ from those of most other motor-driven applications. That’s why motors that go into these tools need specialized designs.

By Thomas Baile, Business Development Manager | Portescap

Most electric-motor-driven designs demand torque for the entirety of their motion. In contrast, power tools for fastening, gripping, and cutting applications have a motion profile consisting of two stages.
Motors for industrial power tools nutrunner Portescap
Power tools benefit from Portescap EC slotless motors with efficiency of copper turns to minimize joule losses; compact design; and strong coil integrity. The motors can also deliver a wide range of torque constants.

Power-tool speed stage: At first (as the tool drives a fastener to thread into place or the jaws of a cutting or gripping tool approach a workpiece) there’s little resistance.

Power-tool torque stage: Then when the tool performs the more forceful work of tightening, cutting or gripping, there’s a sudden torque demand.

These alternating speed and torque cycles constantly repeat in industrial power-tool applications even while necessitating different speeds and torques for various durations. That’s why such tools — especially those that are battery-operated so running off low voltage and limited available power — benefit from special motor designs that minimize losses.

As we’ll explore, motors that also operate at faster free-run speeds for the speed stage can trim cycle times to boost productivity … and motors that deliver high peak torque during the torque stage can perform a wider range of tough jobs without excessive heating.

Unlike typical motion designs that demand torque output from the motor throughout the motion, industrial power tools (IPTs) for fastening, gripping, and cutting often have a motion profile split into two stages. This cycle continuously repeats.

Selecting and optimizing brushless motors for power tools

Consider the primary options for handheld industrial power tools — brushed dc motors and brushless dc motors. Battery-powered industrial power tools run on low voltages of 12 to 60 V … so here, brushed dc motors are typically economical but have limited life. The brushes exhibit modes of wear due to electrical influences (from current related to torque) and mechanical influences (due to the friction associated with speed).

Brushless dc motors are more reliable in power tools, as they’re less susceptible to mechanical wear (no brush friction) and can sustain high peak current (no brushes) during the tightening stage, providing far greater life in the hand tool. Brushless dc motors are better suited than brushed dc motors for industrial power tool applications because they require high speed and high peak current.

Brushless dc motors for power tools are typically one of two configurations:

Conventional inrunner motor configurations include permanent magnets on the rotor with three stator windings around the rotor.

Conventional inrunner motors include permanent magnets on the rotor; outrunner (external-rotor) configurations have it reversed. Inrunner motors excel in certain handheld industrial power tools because they have reduced inertia, lower weight, and lower losses — plus their longer length and smaller diameter complement handheld designs for ergonomics.

Outrunner (external-rotor) configurations have it reversed — so coils are innermost on the stator and the magnets are on the O.D. In other words, the stator coils form the motor center while the permanent magnets on the rotor’s inner surface spin within an overhanging rotor surrounding that core.

Inrunner motor configurations excel in handheld industrial power tools because they have reduced inertia, lower weight, and lower losses. Their longer length and smaller diameter also complement handheld designs for ergonomics. Plus a lower rotor inertia brings better tightening and gripping control.

For slotted motors, magnetic induction in the lamination is high because the airgap between the laminations (stator) and magnet is small. However, the motors are inherently rugged. Slotless motors have independently formed coils. The diameter is usually optimized for magnetic induction with a given copper volume.

Brushless dc windings can be constructed in different physical configurations:

Motors with slotted stators: Here, the coils wind through the slots around the stator. Magnetic induction in the lamination is high because the airgap between the laminations (stator) and magnet is small. So, the motors allow a small magnet diameter. The volume of the copper is limited by the slot space and the difficulty of winding within the slot. Having the coil inside the stator slots is advantageous in that it reduces coil-stator assembly thermal resistance.

Without current, the rotor has preferred magnet positions in front of the lamination. That means the motor is prone to generating a cogging or detent torque. One way to decrease the detent torque is to skew the lamination.

But again, slotted motors are inherently robust because the coil is in the lamination.

Motor with slotless stators: Slotless motors have coils wound in a dedicated operation. This coil goes into the motor airgap during motor assembly. Magnetic induction in the coil is lower than in slotted motors because the airgap is larger. So the motor diameter is usually optimized for magnetic induction with a given copper volume.

In fact, induction in slotless motors is usually less than that of a slotted brushless motor. So bigger magnets are typically used to compensate for the loss of induction. One caveat to this solution is that it can increase rotor inertia.

But slotless motor power density is a strength. R/K² — the ability to maintain speed under load, with lower values being better —  is low in slotless motors because induction for a given copper volume is optimized … as evidenced by a sloped curve. Without circulating current, the rotor sees a continuous permeance. That means slotless motors don’t exhibit cogging or detent torque. Iron losses at high speed in slotless motors are also far smaller than those of comparable designs.

There is another caveat: Slotted motors can handle higher temperatures than slotless motor designs — even to 200° C compared to 150° C, to give a typical comparison. That in turn allows more torque generation. Even so, in power tools usually the limiting factor is maximum temperature over time — to an average maximum of 47° C — or so — to accommodate what’s comfortable for the typical hand-tool user. Beyond that value, heating can become uncomfortable for the operator holding the tool. Safety regulations also require maximum temperature to be held lower.

Slotted brushless dc motors Slotless brushless dc motors
(Ultra EC)
Pros Small thermal resistance (coil/casing)

Maximum speed in excess of 100krpm

Fully customized motors

Hipot capability (to 2,500 V)

Torque

Smooth operation and no cogging

Little iron losses at high speed … low operating temperature and easier control

Low noise and vibration

Winding flexibility

Cons Cogging

No standard products

Autoclavable option not available

High thermal resistance

Of course, the electrical performance of a motor is defined by the magnetic circuit. The magnet has a fixed value but the second component (the copper winding) can be easily modified. By changing with the wire diameter and number of turns, the motor’s torque constant kt and resistance R can be fine-tuned for torque and speed. Consider the modes of industrial power-tool operation:

During the speed stage, the motor must operate at high rpm with little resistance:

ω = (U – R · I ) / kt

Where ω = Speed in rad.sec-1 and U = Voltage; R = Resistance in ohms and I = Current in Amps; and kt = Torque constant in Nm/A. Because the torque constant is in the denominator of the calculation, smaller kt values make for higher RPMs. This allows more operations in the same time period which boosts productivity.

Now consider the power tool’s torque stage — when the motor must deliver peak torque at low speeds. Torque is the product of the torque constant and current:

C = kt · I

Where C = Torque in Nm and I = Current in Amps. Higher kt values here make for a higher output torque at a given current. So by adjusting a motor winding’s kt design engineers can optimize either the speed or the output torque to balance optimization of torque with that of speed operation to reduce overall working cycle time. There is no unique solution: kt has to be chosen as the best compromise for a range of working profiles. Motor design experts can support one in this coil design process based on simulations and experience.

Reviewing thermal losses of motors during operation

Consider the losses of a typical industrial power-tool operating cycle. There is a relationship between copper losses and torque. So the design engineer may opt for a motor with a low kt value to increase speed … and then compensate for a low kt with more current (I) to get target output torque. But higher current increases copper losses:

Copper losses = R · I2

So with higher current comes faster heating of the motor and power-tool — thus limiting maximum possible torque. That’s why power-tool motors should be designed to draw as low a current as possible … to limit heat dissipation (and keep tool temperature cool enough to handle) and conserve battery life.

Copper losses and iron losses affect overall torque and speed output.

Now consider iron losses and how they relate to speed. Eddy-current losses increase with the square of speed to heat the brushless motor even if it’s just rotating under a no-load condition. That’s why high-speed motors need special design features to limit eddy-current heating.

Increased power-tool speed promptly makes iron losses exceed copper losses. So motor windings should be tuned for each duty cycle to minimize losses. Ultra EC winding technology greatly reduces iron and copper losses — which in turn gives design engineers more flexibility.

More specifically, some new electronically commutated (EC) brushless motors on the market build on a slotless motor design with specialty coil technology. These reduce copper losses because unlike slotless motors with skewed windings, they have windings parallel to the motor axis to maximize magnetic force and power. Plus they reduce iron losses at high speed. Among other benefits, these motors optimize speed and torque for the most challenging applications — including power tools that take the form of fasteners, grippers, and cutting tools.

High-speed motors in power tools must be of a special design to limit eddy-current heating. To this end, Portescap Ultra EC brushless slotless motors have a patented U-coil technology to reduce copper losses. Unlike slotless motors with skewed windings, Portescap Ultra EC motors have windings parallel with the motor axis to maximize magnetic force and power. Plus Ultra EC motors reduce iron losses at high speed. Straight windings also give the motors shorter rotor lengths compared to those of skewed windings which lowers rotor inertia and reduces iron losses.

Two example applications for EC motors in power tools

Assume for one design we have an average duty cycle including two seconds of moderate free speed — as in a pruning shear, nutrunner, gripper, or stapler. Speed is 20,000 rpm and at 2 seconds torque demand goes to 0.84 Nm.

Assume for the other design we have a heavy-duty cycle including three seconds very fast free speed — as in an automotive nutrunner optimized for productivity. Here, speed is to 40,000 rpm and at 3 seconds torque demand goes to 0.69 Nm.

For the first design:

Brushless motor type Ultra 64 Skewed winding Slotted motor Ultra 90
Ø · L (mm) 30 · 64 30 · 64 28.5 · 88.5 30 · 90
Poles 4 4 4 4

Here straight-coil EC Ultra motors are more efficient (exhibiting less losses) than skewed-winding or slotted motors.

For the second design:

Brushless motor type Ultra 64 HS Slotted 90 Slotted 100 Ultra 90 HS Ultra 64 Ultra Speed 60 Ultra Speed 80
Ø · L (mm) 30 · 64 28.5 · 88.5 34 ·99 30 · 90 30 · 64 35 · 60 35 · 80
Poles 4 4 4 4 4 2 2

There are higher iron losses than in the standard-duty design because the speed is doubled. Even so, straight-coil EC Ultra motors are still more efficient than skewed-winding or slotted motors.

Portescap | www.portescap.com

Motors with slotless construction excel in most industrial power tools because they have less induction in their laminations than other motors — which equates to no iron losses. Further Portescap improvements on slotless motor construction include straight turns, inner and outer heads, special outputs to prevent loose wires, and axial and radial forming.

For more than 25 years, leading manufacturers have relied on Portescap’s products, expertise, and support to develop corded and battery-powered tools while improving quality control and flexibility. Portescap innovation has helped transitions from pneumatic to electric tools while raising industrial power-tool performance standards. In 2013, Portescap patented the first slotless motor design with its Ultra EC coil.

You Might Also Like

Filed Under: Brushless Motors, DC Motors, Featured, Industrial Automation, Motion Casebook, Motors Tagged With: Portescap

Reader Interactions

Leave a Reply

You must be logged in to post a comment.

Primary Sidebar

LEARNING CENTER

Design World Learning Center

Motion Control Handbook

“mct
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.

RSS Featured White Papers

  • Robotic Automation is Indispensable for the Logistics Industry’s Continued Growth and Success
  • Reliable Linear Motion For Packaging Machines
  • Polymers Outperform Metals In Precision Gearing

Footer

Motion Control Tips

DESIGN WORLD NETWORK

Design World Online
The Robot Report
Coupling Tips
Linear Motion Tips
Bearing Tips
Fastener Engineering.
Wire and Cable Tips

MOTION CONTROL TIPS

Subscribe to our newsletter
Advertise with us
Contact us
About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy | RSS