• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Motion Control Tips

Automation • Motion Control • Power Transmission

  • News
    • Industry News
    • Editor Blogs
    • Video
  • Controls
    • HMIs
    • PC-Based Controllers
    • PLCs + PACs
    • Stand-Alone Controllers
    • Software
  • Drives
    • Servo Drives
    • Stepper Drives
  • Encoders
    • Absolute Encoders
    • Incremental Encoders
    • Rotary Encoders
  • Mechanical
    • Bearings
    • Brakes + Clutches
    • Belt + chain
    • Couplings
    • Gears + Gearing
    • Lubrication
    • Shock + Vibration Mitigation
    • Springs + Rings + Seals
  • Linear
    • Actuators
    • Linear Motors
    • Linear Encoders
  • Motors
    • AC Motors
    • DC Motors
    • Brushless Motors
    • Gearmotors
    • Piezo Motors
    • Servo Motors
    • Stepper Motors
  • Systems
    • Conveyors + linear transport systems
    • Gantries + Stages
    • Rotary Tables
    • Grippers + End Effectors
    • Robotics
  • Networks
    • Connections + Sliprings
    • Fieldbuses
    • I/O
    • Sensors + Vision
  • FAQs
    • Motion Casebook
    • Motion Selection Guides
  • Suppliers
You are here: Home / Featured / NASA’s Perseverance rover heading to Mars with maxon drives aboard

NASA’s Perseverance rover heading to Mars with maxon drives aboard

July 7, 2020 By Miles Budimir Leave a Comment

This month, NASA will be sending its fifth rover to Mars. Its main mission is to collect soil samples that will be analyzed on Earth at a later time. The rover will also carry a helicopter that will perform the first flights on the Red Planet. maxon’s precision dc and brushless dc motors will be used for numerous mission-critical tasks.

NASA rover
The Perseverance rover on Mars, an artist’s rendition. (Courtesy NASA/JPL)

The launch window for NASA’s next mission opens on July 22nd. An Atlas V rocket will launch the new Perseverance rover on its way to Mars, where it will be searching for signs of previous life on the planet. Its most important job is to take multiple soil samples, seal them in containers and deposit them on the surface of Mars so that a future mission can return them to Earth. Several maxon motors will be used to handle the samples inside the rover. For example, maxon dc motors are installed in the robotic arm which moves the samples from station to station. Maxon motors will also be used for sealing and depositing the sample containers.

NASA’s Jet Propulsion Laboratory (JPL), is carrying out the mission, and have asked maxon to produce 10 drives for the rover. As with almost all previous Mars missions, these drives are based on standard products from maxon’s catalog with modifications. For the first time, NASA is using brushless dc motors, including nine EC 32 flat and one EC 20 flat in combination with a GP 22 UP planetary gearhead. Working closely with JPL specialists, maxon engineers developed the drives over several years and tested them thoroughly to achieve the highest standards of quality.

motors
The modified EC 32 flat motor from maxon – nine of these are used in the Perseverance rover.
motors
The EC 20 flat motor with a GP 22 UP gearhead.

“We’ve learned a lot from this exciting project,” says Robin Phillips, head of the maxon SpaceLab. “We now have very broad expertise in space applications and have established quality assurance processes that meet the expectations of the industry. Customers from other industries such as the medical sector, where requirements are often similar, can also benefit from this know-how.” Space missions place the highest demands on drive systems. This includes vibrations during the rocket launch, vacuum during the journey, impacts on landing, and the harsh conditions on the surface of Mars, where temperatures fluctuate between -125 and +20 ˚C and dust is present everywhere.

The Perseverance rover is expected to land on Mars on February 18, 2021 – but it won’t be alone. A drone helicopter called Ingenuity will be attached to the underside of the rover. It weighs 1.8 kg, is solar powered and will perform several short flights, as well as take aerial images. The main goal of this experiment is to test the concept for further drones of this kind. maxon has six brushed DCX motors with a diameter of 10 mm controlling the tilt of the rotor blades and the direction of flight.

motors
These DCX 10 motors are used to control the tilt of the rotor blades in the Mars helicopter.

The drives are light, dynamic and highly energy-efficient. These properties are crucial, because every gram counts on the Mars helicopter. Flying on Mars is not easy. The atmosphere is extremely thin, roughly comparable to the conditions on Earth at an altitude of 30 km. The drone helicopter has flown in a simulated test environment in the JPL laboratory. Whether it will lift off on Mars remains to be seen. First, other obstacles, such as the rocket launch, must be successful. “We hope that everything goes well and that we’ll soon see our drives in action on Mars,” says maxon CEO Eugen Elmiger. “We’re all keeping our fingers crossed.”

www.maxongroup.us

You may also like:


  • High-power 10-pole brushless motors from Koford Engineering

  • Outer-loop control IC for brushless dc and dc brush motors

  • Trends in gears and gearmotors for eMobility • washdown •…
  • controller
    New miniaturized controller from maxon supports CANopen

Filed Under: Brushless Motors, DC Motors, Featured, Gearmotors, Motors Tagged With: maxonprecisionmotors

Reader Interactions

Leave a Reply Cancel reply

You must be logged in to post a comment.

Primary Sidebar

MOTION DESIGN GUIDES

“motion

“motion

“motion

“motion

“motion

“motion

POWER TRANSMISSION REFERENCE GUIDE

RSS Linear Motion Tips

  • How to make linear motion systems cleanroom compatible
  • Mapping tool optimizes gear rack assembly to maximize positioning accuracy
  • Renishaw launches the FORTiS range of next-generation enclosed linear absolute encoders
  • Multi-axis motion sub-system boasts nanometer resolution
  • Anti-friction miniature linear guides from PM B.V. now come with a variety of cage options
Subscribe Today

RSS Featured White Papers

  • Identifying Best-Value Linear Motion Technologies
  • Learn how to reduce noise and distortion in encoders’ signals
  • Helical Planetary Gearboxes: Understanding The Tradeoffs
Tweets from https://twitter.com/Motion_Control/lists/motion-control-tweets

Footer

Motion Control Tips

DESIGN WORLD NETWORK

Design World Online
The Robot Report
Coupling Tips
Linear Motion Tips
Bearing Tips
Fastener Engineering

MOTION CONTROL TIPS

Subscribe to our newsletter
Advertise with us
Contact us
About us
Follow us on TwitterAdd us on FacebookAdd us on LinkedInAdd us on YouTubeAdd us on Instagram

Copyright © 2021 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy | RSS