• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Advertise
  • Subscribe

Motion Control Tips

Automation • Motion Control • Power Transmission

  • News
    • Industry News
    • Editor Blogs
  • Controls
    • HMIs
    • PC-Based Controllers
    • PLCs + PACs
    • Stand-Alone Controllers
    • Software
  • Drives
    • Servo Drives
    • Stepper Drives
  • Encoders
    • Absolute Encoders
    • Incremental Encoders
    • Rotary Encoders
  • Mechanical
    • Bearings
    • Brakes + Clutches
    • Belt + chain
    • Couplings
    • Gears + Gearing
    • Lubrication
    • Shock + Vibration Mitigation
    • Springs + Rings + Seals
  • Linear
    • Actuators
    • Linear Motors
    • Linear Encoders
  • Motors
    • AC Motors
    • DC Motors
    • Brushless Motors
    • Gearmotors
    • Piezo Motors
    • Servo Motors
    • Stepper Motors
  • Systems
    • Conveyors + linear transport systems
    • Gantries + Stages
    • Rotary Tables
    • Grippers + End Effectors
    • Robotics
  • Networks
    • Connections + Sliprings
    • Fieldbuses
    • I/O
    • Sensors + Vision
  • Resources
    • FAQs
      • Motion Casebook
      • Motion Selection Guides
    • Suppliers
    • Video
You are here: Home / FAQs + basics / What are capacitive proximity sensors?

What are capacitive proximity sensors?

February 14, 2019 By Miles Budimir Leave a Comment

A basic proximity sensor is used to sense the presence of objects or materials. What differentiates them from other sensors is that they don’t make physical contact with the object being sensed, and hence they’re also known as non-contact sensors.

sensor
The diagram shows the internal construction of a capacitive proximity sensor with the internal plate connected to the oscillator (sensor electrodes), and the other being the sensed object, which is detected within the electric field.

One of the most common sensor types is the capacitive proximity sensor. As the name suggests, capacitive proximity sensors operate by noting a change in the capacitance read by the sensor. A typical capacitor consists of two conductive elements (sometimes called plates) separated by some kind of insulating material that can be one of many different types including ceramic, plastic, paper, or other materials.

sensors
Typical capacitive proximity sensors, such as those shown here from AutomationDirect, feature variable sensing distances, in this case from 2 up to 40 mm and can sense metal and non-metal objects. They also feature LED status indicators to help easily verify operation and are IP65 and IP67 rated for use in extreme environments.

The way a capacitive proximity sensor works is that one of the conductive elements, or plates, is inside the sensor itself while the other one is the object to be sensed. The internal plate is connected to an oscillator circuit that generates an electric field. The air gap between the internal plate and the external object serves as the insulator or dielectric material. When an object is present, that changes the capacitance value and registers as the presences of the object.

Capacitive proximity sensors are useful in detecting a wide range of objects. The easiest types of objects to detect are ones with a high density (such as metals) or a high dielectric constant (i.e. water). And detecting these objects doesn’t require that the sensors be fairly close to the objects to be detected, another plus if used in settings with little space to work in. Overall, good sensing targets for capacitive sensors include solids and liquids such as various metals, water, wood and plastic.

A typical sensing range for capacitive proximity sensors is from a few millimeters up to about 1 in. (or 25 mm), and some sensors have an extended range up to 2 in. Where capacitive sensors really excel, however, is in applications where they must detect objects through some kind of material such as a bag, bin, or box. They can tune out non-metallic containers and can be tuned or set to detect different levels of liquids or solid materials.

 

You Might Also Like

Filed Under: FAQs + basics

Reader Interactions

Leave a Reply

You must be logged in to post a comment.

Primary Sidebar

LEARNING CENTER

Design World Learning Center

Motion Control Handbook

“mct
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.

RSS Featured White Papers

  • Robotic Automation is Indispensable for the Logistics Industry’s Continued Growth and Success
  • Reliable Linear Motion For Packaging Machines
  • Polymers Outperform Metals In Precision Gearing

Footer

Motion Control Tips

DESIGN WORLD NETWORK

Design World Online
The Robot Report
Coupling Tips
Linear Motion Tips
Bearing Tips
Fastener Engineering.
Wire and Cable Tips

MOTION CONTROL TIPS

Subscribe to our newsletter
Advertise with us
Contact us
About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy | RSS