• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Motion Control Tips

Automation • Motion Control • Power Transmission

  • News
    • Industry News
    • Editor Blogs
    • Video
  • Controls
    • HMIs
    • PC-Based Controllers
    • PLCs + PACs
    • Stand-Alone Controllers
    • Software
  • Drives
    • Servo Drives
    • Stepper Drives
  • Encoders
    • Absolute Encoders
    • Incremental Encoders
    • Rotary Encoders
  • Mechanical
    • Bearings
    • Brakes + Clutches
    • Belt + chain
    • Couplings
    • Gears + Gearing
    • Lubrication
    • Shock + Vibration Mitigation
    • Springs + Rings + Seals
  • Linear
    • Actuators
    • Linear Motors
    • Linear Encoders
  • Motors
    • AC Motors
    • DC Motors
    • Brushless Motors
    • Gearmotors
    • Piezo Motors
    • Servo Motors
    • Stepper Motors
  • Systems
    • Conveyors + linear transport systems
    • Gantries + Stages
    • Rotary Tables
    • Grippers + End Effectors
    • Robotics
  • Networks
    • Connections + Sliprings
    • Fieldbuses
    • I/O
    • Sensors + Vision
  • FAQs
    • Motion Casebook
    • Motion Selection Guides
  • Suppliers
You are here: Home / FAQs + basics / FAQ: What is sinusoidal commutation for dc motors?

FAQ: What is sinusoidal commutation for dc motors?

November 6, 2016 By Danielle Collins Leave a Comment

Although the back EMF waveform of a brushless DC (BLDC) motor is theoretically trapezoidal, in reality, inductance in the motor smooths the back EMF into a more sinusoidal shape. This is why BLDC motors can use either trapezoidal or sinusoidal commutation methods. While trapezoidal commutation is the simpler of the two methods, it produces significant torque ripple at each commutation step (every 60 degrees). Sinusoidal commutation eliminates the torque ripple inherent to trapezoidal commutation and provides smooth motion and precise motor control.

Sinusoidal Commutation
Sinusoidal commutation eliminates the torque ripple that occurs with trapezoidal or six step (also called “modified trapezoidal”) methods.
Image credit: Aerotech Inc.

The basic premise behind sinusoidal commutation is to provide each of the motor windings with currents that vary sinusoidally as the motor turns. The currents are phase shifted by 120 degrees, to match the orientation of the stator windings. The current space vector has constant magnitude and is always orthogonal to the rotor. (Recall that maximum torque is produced when the stator and rotor magnetic fields are orthogonal, or at 90 degrees, to each other.) A key to achieving sinusoidal commutation is the ability to accurately determine the rotor position. Since Hall devices provide only a rough measurement of rotor position, an encoder is typically used to provide rotor position information.

Based on the rotor position, two sinusoidal waveforms are created, 120 degrees phase shifted from each other. Multiplying these signals by the torque command produces amplitudes that are proportional to the desired torque. These commands are fed to the controller, which regulates the current in the motor windings. According to Kirchhoff’s current law, the sum of the three currents must be equal to zero, so the current in the third motor winding is the negative sum of the first two (to maintain a zero sum of the three), and therefore, cannot be controlled directly.

Sinusoidal Commutation
Block diagram of sinusoidal commutation for a BLDC motor.
Image credit: Renesas Electronics Corporation

To see how this works, let’s look at the torque equation for a three-phase motor:

T = Kt * [IA * Sin(θ) + IB * Sin(θ +120) + IC * Sin(θ +240)]

Where:

T = torque

Kt = torque constant

IA, IB, IC = phase currents

θ = electrical angle of shaft

Because the phase currents are sinusoidal:

IA = M * Sin(θ)

IB = M * Sin(θ+120)

IC = M * Sin(θ+240)

Where M = motor current command with respect to the angle θ

Substituting, we get:

T = Kt * M * [(sin2(θ) + sin2(θ+120) + sin2(θ+240)]

Solving the trigonometric functions* gives us:

T = Kt * M * 1.5 * [sin2(θ) + cos2(θ)]

Since sin2(θ) + cos2(θ) = 1, the equation simplifies to:

T = 1.5 * Kt * M

This shows that torque is independent of the shaft angle, thus eliminating torque ripple.


The trigonometry to solve this equation gets quite complicated but if you’re interested in the full derivation, check out Appendix A of this Application Note from Galil Motion Control.


The downside of sinusoidal commutation is that it becomes inefficient at high speeds. The faster the motor turns, the higher the frequency of the sinusoidal signals, and controllers have difficulty tracking these high-frequency signals. Higher motor speeds also cause back-EMF to increase in both amplitude and frequency, making it more difficult for the motor to overcome.

Both of theses conditions result in disturbances to the current control loop and cause phase lag and errors in the currents. The result is that the current space vector moves away from the ideal (orthogonal) position relative to the rotor, and less torque is produced by a given amount of current.

You may also like:


  • Robotics Summit in June: Attend for technology insights (and hero…

  • Lenz’s Law and Back EMF
  • trapezoidal back EMF
    FAQ: What is trapezoidal back EMF?

  • FAQ: What is sinusoidal back EMF with sinusoidal current?
  • BLDC and synchronous AC motors
    What’s the difference between BLDC and synchronous AC motors?

Filed Under: DC Motors, FAQs + basics, Featured

Reader Interactions

Leave a Reply

You must be logged in to post a comment.

Primary Sidebar

POWER TRANSMISSION REFERENCE GUIDE

DESIGN GUIDE LIBRARY

“motion
Subscribe Today

RSS Featured White Papers

  • Specifying electric rodless actuators: Ten tips for maximizing actuator life and system performance
  • The truth about actuator life: Screw drive survival
  • Top Ten Tips: How to specify electric rod-style actuators for optimal performance, reliability and efficiency

Footer

Motion Control Tips

DESIGN WORLD NETWORK

Design World Online
The Robot Report
Coupling Tips
Linear Motion Tips
Bearing Tips
Fastener Engineering.

MOTION CONTROL TIPS

Subscribe to our newsletter
Advertise with us
Contact us
About us
Follow us on TwitterAdd us on FacebookAdd us on LinkedInAdd us on YouTubeAdd us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy | RSS