• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Advertise
  • Subscribe

Motion Control Tips

Automation • Motion Control • Power Transmission

  • News
    • Industry News
    • Editor Blogs
  • Controls
    • HMIs
    • PC-Based Controllers
    • PLCs + PACs
    • Stand-Alone Controllers
    • Software
  • Drives
    • Servo Drives
    • Stepper Drives
  • Encoders
    • Absolute Encoders
    • Incremental Encoders
    • Rotary Encoders
  • Mechanical
    • Bearings
    • Brakes + Clutches
    • Belt + chain
    • Couplings
    • Gears + Gearing
    • Lubrication
    • Shock + Vibration Mitigation
    • Springs + Rings + Seals
  • Linear
    • Actuators
    • Linear Motors
    • Linear Encoders
  • Motors
    • AC Motors
    • DC Motors
    • Brushless Motors
    • Gearmotors
    • Piezo Motors
    • Servo Motors
    • Stepper Motors
  • Systems
    • Conveyors + linear transport systems
    • Gantries + Stages
    • Rotary Tables
    • Grippers + End Effectors
    • Robotics
  • Networks
    • Connections + Sliprings
    • Fieldbuses
    • I/O
    • Sensors + Vision
  • Resources
    • FAQs
      • Motion Casebook
      • Motion Selection Guides
    • Suppliers
    • Video
You are here: Home / FAQs + basics / How do pulse-duty servo drives and motors differ from continuous-duty versions?

How do pulse-duty servo drives and motors differ from continuous-duty versions?

May 24, 2018 By Danielle Collins Leave a Comment

Servo systems are applied in a wide range of applications, from intermittent operations that require high torque output for quick acceleration and deceleration — such as pick-and-place from a conveyor — to processes that call for nearly uninterrupted operation with constant speed and torque requirements — such as printing, roll feeding, and labeling. Given these dissimilar application requirements and the effect that torque, current, and duty cycle have on servo system performance, it’s easy to see why one type of servo drive or motor doesn’t fit all applications.

A key factor in servo system performance is heating, or more specifically, the ability of the motor and drive to dissipate heat to avoid damaging the motor insulation and drive electronics. There are a variety of causes for excessive heat generation, but aside from misapplied or poorly maintained products, operating at peak torque (and, thus, peak current) is one of the most significant factors.

torque-speed curve
Servo motors and drives have two operating zones: continuous duty and intermittent (peak) duty. Image credit: Moog Animatics

Recall that the torque curve for a servo motor and drive combination includes two operating ranges: continuous torque and intermittent (peak) torque. The continuous torque range shows the torque the motor and drive can produce indefinitely at a given speed and is the basis for evaluating the RMS torque required by the application.

Peak torque is the maximum torque the motor and drive can produce at a given speed and requires maximum current from the drive. To avoid overheating, the peak torque value is allowable only for a short amount of time — typically a few hundred milliseconds.

Accordingly, servo applications often fall into two categories:

• Servo applications that involve very rapid acceleration and deceleration … and therefore have high peak torque requirements

• Servo applications that require good continuous torque characteristics with moderate peak torque demands. The first type of application is referred to as pulse duty, and the second type is referred to as continuous duty. To address the disparity in performance requirements between these different applications, some manufacturers offer two variations of servo drives and motors: pulse duty versions and continuous duty versions.

Pulse-duty servo drives and motors

Pulse-duty servo drives and motors are designed to perform well in applications that involve very rapid acceleration and deceleration rates, and in turn, have high peak torque requirements. Accordingly, pulse duty servo drives have a high current overload rating, while pulse duty motors have lower inertia than conventional designs, which reduces the amount of torque (and thus, current) required for demanding move profiles.

pulse duty servo drives
Pulse duty servo drives and motors are often used in pick-and-place applications, such as this robotic palletizer, which require high peak torque production to meet demanding acceleration and deceleration rates. Image credit: Bastian Solutions, Inc.

Continuous-duty motors and drives

On the other hand, continuous duty versions are designed to produce relatively higher torque at higher speeds on a continuous basis, with moderate peak torque capabilities. Thus, the torque curves for continuous duty drives and motors have larger continuous operation areas.

pulse duty servo drives
Continuous-duty motors and drives are suitable for printing applications needing near-constant operation at high speeds with moderate torque requirements. Image credit: Kollmorgen
pulse duty servo drives
Feature image credit: Nidec Motor Corp.

Note: Root mean square torque (RMS torque) is a calculated value based on the torque required during each phase of the motion profile (acceleration, constant velocity, holding, deceleration, and so on) and the duration of each.

RMS torque is a time-weighted average — in other words, it is the amount of torque that (if produced continuously) would generate the same level of heating as the various torque levels and durations the motor experiences over its actual duty cycle.

The purpose of calculating RMS torque is to ensure that overheating doesn’t occur during normal motor and drive operation.

You Might Also Like

Filed Under: FAQs + basics, Featured, Servo Drives

Reader Interactions

Leave a Reply

You must be logged in to post a comment.

Primary Sidebar

LEARNING CENTER

Design World Learning Center

Motion Control Handbook

“mct
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.

RSS Featured White Papers

  • Robotic Automation is Indispensable for the Logistics Industry’s Continued Growth and Success
  • Reliable Linear Motion For Packaging Machines
  • Polymers Outperform Metals In Precision Gearing

Footer

Motion Control Tips

DESIGN WORLD NETWORK

Design World Online
The Robot Report
Coupling Tips
Linear Motion Tips
Bearing Tips
Fastener Engineering.
Wire and Cable Tips

MOTION CONTROL TIPS

Subscribe to our newsletter
Advertise with us
Contact us
About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy | RSS