• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Motion Control Tips

Automation • Motion Control • Power Transmission

  • News
    • Industry News
    • Editor Blogs
    • Video
  • Controls
    • HMIs
    • PC-Based Controllers
    • PLCs + PACs
    • Stand-Alone Controllers
    • Software
  • Drives
    • Servo Drives
    • Stepper Drives
  • Encoders
    • Absolute Encoders
    • Incremental Encoders
    • Rotary Encoders
  • Mechanical
    • Bearings
    • Brakes + Clutches
    • Belt + chain
    • Couplings
    • Gears + Gearing
    • Lubrication
    • Shock + Vibration Mitigation
    • Springs + Rings + Seals
  • Linear
    • Actuators
    • Linear Motors
    • Linear Encoders
  • Motors
    • AC Motors
    • DC Motors
    • Brushless Motors
    • Gearmotors
    • Piezo Motors
    • Servo Motors
    • Stepper Motors
  • Systems
    • Conveyors + linear transport systems
    • Gantries + Stages
    • Rotary Tables
    • Grippers + End Effectors
    • Robotics
  • Networks
    • Connections + Sliprings
    • Fieldbuses
    • I/O
    • Sensors + Vision
  • FAQs
    • Motion Casebook
    • Motion Selection Guides
  • Suppliers
You are here: Home / FAQs + basics / What You Need to Know About Plastic Gears

What You Need to Know About Plastic Gears

December 18, 2017 By Danielle Collins Leave a Comment

Plastic gears are primarily recognized for their quiet operation and resistance to rust – attributes that are important in the food processing, medical equipment, and chemical processing industries, as well as in consumer applications. But plastic gears offer many other benefits, and advances in materials and manufacturing processes are helping to close the remaining performance gap between plastics and metals in gearing applications.


Plastic Gears
Most gear types – including spur, bevel, and worm – can be made from plastic.
Image credit: QTC Metric Gears

When determining whether a plastic gear will be suitable for a particular application, the most critical factor is environment. Plastics are less dimensionally stable than metals, and their strength and stiffness characteristics are heavily dependent on temperature and can change with exposure to water or chemicals. (Moisture causes many plastic materials to swell, and chemical exposure can cause them to either shrink or swell, depending on the chemical and the plastic.)

Plastic and metal gears also experience different types of contact under load. Metal gears have primarily line contact, with one tooth in mesh at a time. But plastic gear teeth have an involute surface that deforms under load, distributing the contact pressure across a larger surface and allowing contact between adjacent teeth. This provides load sharing among teeth, and helps to improve the life of plastic gears in some applications – especially those with high impact loads and relatively low continuous loads.

The lighter weight of plastic gears means they also have lower inertia than their metal counterparts, which is essential for aerospace and some military applications. Most plastic gears are capable of running without lubrication or can be embedded with lubricating materials (such as graphite, silicone, or PTFE). However, some operating conditions benefit from, or even require, lubrication. Choosing a lubricant for plastic gears should take into consideration the environmental, load, and speed conditions that the gears will operate in. If the lubricant isn’t compatible with the plastic material, stress cracking or even failure of the plastic can result.


Plastic Gears

Due to their primarily sliding contact, worm gears experience high temperature rise, which can decrease the strength and increase the wear of plastic materials. Therefore, speed capability is limited for plastic worm gears, and lubrication is typically recommended.


The variety of plastics that are suitable for gear applications is extensive, but common choices include nylon, acetyl, polycarbonate, polyphenylene sulfide, and polyurethane. The addition of glass fiber can improve the stiffness and heat conductivity of some materials, although it reduces the material’s fatigue endurance. For better tooth strength and lower cost – relative to machining – plastic gears can be processed by injection molding. However, machined plastic gears can be produced to meet higher AGMA quality levels than can be achieved with injection molded versions.

Plastic Gears
A metal hub – either molded into the gear or assembled after manufacturing – will increase the rigidity of the gear and provide a secure surface for fastening the gear to the shaft.
Image credit: Kohara Gear Industry Co., Ltd.

Feature image credit: QTC Metric Gears

You may also like:

  • gearbox lubrication
    What are the best methods for gearbox lubrication?

  • What is pitch line velocity and why is it important?

  • Worm gears: What are they and where are they used?
  • gearbox
    What is a gearbox?

  • Industrial gear designs push the envelope with new materials and…

Filed Under: FAQs + basics, Featured, Gears + Gearing

Reader Interactions

Leave a Reply

You must be logged in to post a comment.

Primary Sidebar

POWER TRANSMISSION REFERENCE GUIDE

DESIGN GUIDE LIBRARY

“motion
Subscribe Today

RSS Featured White Papers

  • Specifying electric rodless actuators: Ten tips for maximizing actuator life and system performance
  • The truth about actuator life: Screw drive survival
  • Top Ten Tips: How to specify electric rod-style actuators for optimal performance, reliability and efficiency

Footer

Motion Control Tips

DESIGN WORLD NETWORK

Design World Online
The Robot Report
Coupling Tips
Linear Motion Tips
Bearing Tips
Fastener Engineering.

MOTION CONTROL TIPS

Subscribe to our newsletter
Advertise with us
Contact us
About us
Follow us on TwitterAdd us on FacebookAdd us on LinkedInAdd us on YouTubeAdd us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy | RSS