• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Motion Control Tips

Automation • Motion Control • Power Transmission

  • News
    • Industry News
    • Editor Blogs
    • Video
  • Controls
    • HMIs
    • PC-Based Controllers
    • PLCs + PACs
    • Stand-Alone Controllers
    • Software
  • Drives
    • Servo Drives
    • Stepper Drives
  • Encoders
    • Absolute Encoders
    • Incremental Encoders
    • Rotary Encoders
  • Mechanical
    • Bearings
    • Brakes + Clutches
    • Belt + chain
    • Couplings
    • Gears + Gearing
    • Lubrication
    • Shock + Vibration Mitigation
    • Springs + Rings + Seals
  • Linear
    • Actuators
    • Linear Motors
    • Linear Encoders
  • Motors
    • AC Motors
    • DC Motors
    • Brushless Motors
    • Gearmotors
    • Piezo Motors
    • Servo Motors
    • Stepper Motors
  • Systems
    • Conveyors + linear transport systems
    • Gantries + Stages
    • Rotary Tables
    • Grippers + End Effectors
    • Robotics
  • Networks
    • Connections + Sliprings
    • Fieldbuses
    • I/O
    • Sensors + Vision
  • FAQs
    • Motion Casebook
    • Motion Selection Guides
  • Suppliers
You are here: Home / FAQs + basics / What function do thermistors and KTY sensors serve in motors and gearmotors?

What function do thermistors and KTY sensors serve in motors and gearmotors?

February 13, 2020 By Danielle Collins Leave a Comment

One of the most important operating parameters of motor and gearmotor operation is the temperature of the motor windings. Motor heating is caused by mechanical, electrical, and copper losses, as well as heat transferred to the motor from external sources, including the ambient temperature and surrounding equipment.

KTY sensors
Temperature sensors embedded in motor stator windings.
Image credit: KEB America

If the temperature of the motor windings surpasses the maximum rated temperature, the windings could be damaged or the motor insulation could break down or completely fail. This is why a majority of motors and gearmotors — especially those used in motion control applications — have thermistors or silicon resistive sensors (also referred to as KTY sensors) integrated into the motor windings. These sensors monitor winding temperature directly (instead of relying on measurements of current) and are used in conjunction with protective circuits to prevent damage due to excessive temperature.


PTC and NTC thermistors

Thermistors are devices that exhibit a predictable and precise change in resistance when they experience a change in temperature — regardless of whether the temperature change is caused by conduction or radiation from the surrounding environment or by self-heating due to power dissipation. Thermistors are divided into two primary types: those with a positive temperature coefficient (PTC) and those with a negative temperature coefficient (NTC). Positive temperature coefficient thermistors experience an increase in resistance as temperature rises, while negative temperature coefficient devices experience a decrease in resistance as temperature rises.

Positive temperature coefficient thermistors are typically made of ceramic material that has been doped to create a semiconductor. These semiconductor PTC sensors have a non-linear resistance-temperature curve, and at a critical temperature (sometimes referred to as the switch temperature or Curie temperature), resistance increases significantly. This sharp spike in resistance can be used to trigger protective relays that switch off current to the motor, preventing damage to the windings and insulation.

NTC thermistors experience a non-linear decrease in resistance with an increase in temperature, while PTC thermistors experience a slight decrease up to a critical temperature (Tc), at which point resistance increases significantly.
Image credit: Ametherm

Negative temperature coefficient thermistors are made from a type of ceramic (polycrystalline oxide ceramic) that exhibits a very precise change in resistance as temperature changes. Where PTC thermistors exhibit a “switching point” at a critical temperature, NTC thermistors are better suited for precise temperature monitoring over a wide temperature range and are often used for monitoring and limiting inrush current.

Silicon resistive sensors (aka KTY sensors)

Another type of positive temperature coefficient sensor is the silicon resistive sensor, also referred to as a KTY sensor (the series name given to this type of sensor by Philips, the original manufacturer of KTY sensors). These PTC sensors are made of doped silicone and manufactured with a process referred to as spreading resistance, which makes resistance nearly independent of manufacturing tolerances. Unlike PTC thermistors, which experience a sharp rise in resistance at a critical temperature, KTY sensors have a nearly linear resistance-temperature curve.

KTY sensors
Silicon resistive sensors (also referred to as KTY sensors) have a positive temperature coefficient that is relatively linear.
Image credit: KEB America

KTY sensors have a high degree of stability (low thermal drift) and nearly constant temperature coefficient, and are also typically lower cost than PTC thermistors. While both PTC thermistors and KTY sensors are commonly used for monitoring winding temperature in motors and gearmotors, KTY sensors are more prevalent in large or high-value motors, such as iron core linear motors, due to their high accuracy and linear behavior.


Feature image credit: Electro Technical Officer

 

You may also like:

  • severe duty motors
    Severe duty motors: What makes them suitable for harsh applications?
  • gearmotors
    How to design gearmotors for extreme ambient conditions

  • Thermal time constants and managing PMAC servo motor overloads
  • gearmotors
    FAQ: What’s the difference between standard and inverter-duty gearmotors?

  • FAQ: How to calculate motor temperature (worst-case) under required load?

Filed Under: FAQs + basics, Featured, Motors, Sensors + Vision

Reader Interactions

Leave a Reply Cancel reply

You must be logged in to post a comment.

Primary Sidebar

MOTION DESIGN GUIDES

“motion

“motion

“motion

“motion

“motion

POWER TRANSMISSION REFERENCE GUIDE

RSS Linear Motion Tips

  • Ride the wave of electrification: Off-highway designs with linear actuators
  • What are capacitive sensors and where are they used?
  • What factors contribute to air bearing stiffness?
  • Rails, screw assemblies boast 20,000 km travel without relubrication
  • When should you use a bronze lead screw nut?
Subscribe Today

RSS Featured White Papers

  • Identifying Best-Value Linear Motion Technologies
  • Learn how to reduce noise and distortion in encoders’ signals
  • Helical Planetary Gearboxes: Understanding The Tradeoffs
Tweets from https://twitter.com/Motion_Control/lists/motion-control-tweets

Footer

Motion Control Tips

DESIGN WORLD NETWORK

Design World Online
The Robot Report
Coupling Tips
Linear Motion Tips
Bearing Tips
Fastener Engineering

MOTION CONTROL TIPS

Subscribe to our newsletter
Advertise with us
Contact us
About us
Follow us on TwitterAdd us on FacebookAdd us on LinkedInAdd us on YouTubeAdd us on Instagram

Copyright © 2021 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy | RSS