• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Advertise
  • Subscribe

Motion Control Tips

Automation • Motion Control • Power Transmission

  • News
    • Industry News
    • Editor Blogs
  • Controls
    • HMIs
    • PC-Based Controllers
    • PLCs + PACs
    • Stand-Alone Controllers
    • Software
  • Drives
    • Servo Drives
    • Stepper Drives
  • Encoders
    • Absolute Encoders
    • Incremental Encoders
    • Rotary Encoders
  • Mechanical
    • Bearings
    • Brakes + Clutches
    • Belt + chain
    • Couplings
    • Gears + Gearing
    • Lubrication
    • Shock + Vibration Mitigation
    • Springs + Rings + Seals
  • Linear
    • Actuators
    • Linear Motors
    • Linear Encoders
  • Motors
    • AC Motors
    • DC Motors
    • Brushless Motors
    • Gearmotors
    • Piezo Motors
    • Servo Motors
    • Stepper Motors
  • Systems
    • Conveyors + linear transport systems
    • Gantries + Stages
    • Rotary Tables
    • Grippers + End Effectors
    • Robotics
  • Networks
    • Connections + Sliprings
    • Fieldbuses
    • I/O
    • Sensors + Vision
  • Resources
    • FAQs
      • Motion Casebook
      • Motion Selection Guides
    • Suppliers
    • Video
You are here: Home / FAQs + basics / Why do stepper motors vibrate and what are ways to avoid or dampen vibrations?

Why do stepper motors vibrate and what are ways to avoid or dampen vibrations?

January 21, 2022 By Danielle Collins Leave a Comment

With each discrete step that a stepper motor makes, the inertia of the system causes the motor to slightly overshoot (or undershoot) the intended step angle. The motor then oscillates, or “rings,” until it finally settles at the commanded position. If the frequency of these step-by-step oscillations is at or near the motor’s natural frequency, the motor’s settling time will increase and vibrations and audible noise can occur. This is referred to as resonance, and if it becomes severe, it can cause the motor to lose steps or even stall.


All objects have a natural, or resonant, frequency at which the object vibrates in the absence of any damping force. For a classic spring-mass system, the resonant frequency is a function of the spring constant and the mass.

natural frequency equation

ω0 = resonant frequency of a spring-mass system (rad/s)

k = spring constant (N/m)

m = mass (kg)

For a stepper motor system, the resonant frequency is a function of the motor’s torque constant and the system inertia. (Note that the motor’s resonant frequency is a function of the rotor inertia, but in stepper motor systems, it’s the inertia of the motor-load combination that’s important.)

stepper motor natural frequency equation

ω = resonant frequency of a stepper motor system (rad/s)

K = torque constant (Nm)

J = system (motor + load) inertia (kgm2)

There are several methods to reduce resonance in a stepper motor system, with the simplest method often being to change the system’s inertia. There are two ways a user can do this — by adding a mechanical damper between the motor and the load or by adding a gearbox to the system.

Mechanical dampers for stepper motors range from simple elastomer rings that absorb and dissipate vibration energy, to tuned mass dampers, which are designed to match and counter the natural frequency of the system.

stepper motor vibrations damper
The addition of a damper between the motor and the load can significantly reduce vibrations and improve the motor’s settling time.
Image credit: Moons’

The addition of a gearbox provides two benefits. First, it decreases the total system inertia by decreasing the load inertia. (Recall that when a gearbox is used, the load inertia is divided by the square of the gear ratio). And when power is transferred from the motor through a gearbox, the motor has to rotate faster for a given output speed to the load, so there’s less chance that the motor will operate at or near its natural frequency.

The stepper drive’s control method can also affect the amount of vibration that the motor experiences. Case in point, operating a motor with microstepping control gives the benefit of smaller torque variance with each step, since the build-up and decay of current in the windings is more gradual. Even though overshooting (or undershooting) is still possible with microstepping, it will be less significant than with full-step operation, so settling time and vibrations will be lower.

Stepper Motor Vibrations Microstepping
Microstepping provides a smaller torque variance with each motor step, which reduces vibrations.
Image credit: New Japan Radio Co., Ltd.

Five-phase stepper motors also have smaller step angles than typical 2-phase motors. As with microstepping, the smaller step angle means less current is required for each step, so any vibrations that occur are less severe. And with more phases (five versus two) contributing to output torque, the motor experiences lower torque ripple, and in turn, fewer vibrations.

torque displacement 5-phase vs 2-phase
5-phase stepper motors experience much lower torque ripple – and, in turn, lower vibrations – than 2-phase designs.
Image credit: Oriental Motor

From a manufacturing standpoint, a stepper motor’s tendency to vibrate can be reduced by changing the rotor inertia (through material or design changes) and by altering the size of the air gap between the motor and stator, which in turn, changes the motor’s torque stiffness. Manufacturers also offer stepper motor drivers that monitor and precisely control current in the motor windings to provide smooth operation, minimize vibrations, and avoid resonance.

You Might Also Like

Filed Under: FAQs + basics, Featured, Stepper Drives, Stepper Motors

Reader Interactions

Leave a Reply

You must be logged in to post a comment.

Primary Sidebar

LEARNING CENTER

Design World Learning Center

Motion Control Handbook

“mct
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.

RSS Featured White Papers

  • Robotic Automation is Indispensable for the Logistics Industry’s Continued Growth and Success
  • Reliable Linear Motion For Packaging Machines
  • Polymers Outperform Metals In Precision Gearing

Footer

Motion Control Tips

DESIGN WORLD NETWORK

Design World Online
The Robot Report
Coupling Tips
Linear Motion Tips
Bearing Tips
Fastener Engineering.
Wire and Cable Tips

MOTION CONTROL TIPS

Subscribe to our newsletter
Advertise with us
Contact us
About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy | RSS