• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Advertise
  • Subscribe

Motion Control Tips

Automation • Motion Control • Power Transmission

  • News
    • Industry News
    • Editor Blogs
  • Controls
    • HMIs
    • PC-Based Controllers
    • PLCs + PACs
    • Stand-Alone Controllers
    • Software
  • Drives
    • Servo Drives
    • Stepper Drives
  • Encoders
    • Absolute Encoders
    • Incremental Encoders
    • Rotary Encoders
  • Mechanical
    • Bearings
    • Brakes + Clutches
    • Belt + chain
    • Couplings
    • Gears + Gearing
    • Lubrication
    • Shock + Vibration Mitigation
    • Springs + Rings + Seals
  • Linear
    • Actuators
    • Linear Motors
    • Linear Encoders
  • Motors
    • AC Motors
    • DC Motors
    • Brushless Motors
    • Gearmotors
    • Piezo Motors
    • Servo Motors
    • Stepper Motors
  • Systems
    • Conveyors + linear transport systems
    • Gantries + Stages
    • Rotary Tables
    • Grippers + End Effectors
    • Robotics
  • Networks
    • Connections + Sliprings
    • Fieldbuses
    • I/O
    • Sensors + Vision
  • Resources
    • FAQs
      • Motion Casebook
      • Motion Selection Guides
    • Suppliers
    • Video
You are here: Home / FAQs + basics / What is state space control?

What is state space control?

February 7, 2018 By Danielle Collins Leave a Comment

If you design, install, or troubleshoot motion control systems, you’re probably familiar with PID (proportional-integral-derivative) control, which uses feedback to detect errors between the desired position and the actual position and applies corrective commands to compensate for those errors. Although PID control is the most common type of industrial controller, it does have limitations. First, PID control is generally not suitable for systems with multiple inputs and multiple outputs (MIMO), as the transfer functions and differential equations used to represent the system become overly complex when more then one input (or output) is involved. Second, PID control is based on constant parameters, so its effectiveness in controlling non-linear systems is limited.

An alternative control method is state space control. The key difference between PID control (aka “transfer control”) and state space control is that the state space method takes into account the internal state of the system, through what are referred to as “state variables.” These state variables describe the system and its response to any given set of inputs. PID control, on the other hand, relies on an “observer,” which estimates the internal state of the system based on measured inputs and outputs.


A state space system is represented by just two equations. First, the state equation gives the relationship between the system’s current state and input to its future state. The output equation gives the relationship between the system’s current state and input to its output.

For a linear time-invariant* (LTI) system, the state and output equations are as follows:

x’ = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

Where:

x is the vector of all the state variables

x’ is the time derivative of the state vector

u is the input vector

y is the output vector

A is the state matrix

B is the input matrix

C is the output matrix

D is the feedforward matrix

State space control
State space control block diagram.
Image credit: wikipedia.org

*A time-invariant system is one in which the output doesn’t depend on when the input occurred. In contrast, in a time-variant system, the timing of the input has an effect on the output. An example of a time-variant system is a dispensing system, where the mass of the system changes as it dispenses the liquid into the process.


State space control is often referred to as a “modern” control method because it takes the differential equations that describe the time domain of the system and analyzes them in vector form using state variables. This makes it possible to evaluate the system via simple matrix algebra, which also allows multiple-input, multiple-output systems to be evaluated. This is in contrast to “classical” control methods, such as PID, which rely on complex Laplace transforms and Fourier transforms to convert the system’s time domain representation – given as a complex set of differential equations – into the frequency domain – given as algebraic equations.

The major benefit of state space control over transfer function methods is its applicability to a wide range of systems: linear and non-linear; time-varying and time-invariant; single-input, single-output (SISO) and multiple-input, multiple-output (MIMO).

You Might Also Like

Filed Under: Controls, FAQs + basics, Featured

Reader Interactions

Leave a Reply

You must be logged in to post a comment.

Primary Sidebar

LEARNING CENTER

Design World Learning Center

Motion Control Handbook

“mct
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for Design Engineering Professionals.

RSS Featured White Papers

  • Robotic Automation is Indispensable for the Logistics Industry’s Continued Growth and Success
  • Reliable Linear Motion For Packaging Machines
  • Polymers Outperform Metals In Precision Gearing

Footer

Motion Control Tips

DESIGN WORLD NETWORK

Design World Online
The Robot Report
Coupling Tips
Linear Motion Tips
Bearing Tips
Fastener Engineering.
Wire and Cable Tips

MOTION CONTROL TIPS

Subscribe to our newsletter
Advertise with us
Contact us
About us

Copyright © 2025 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy | RSS