• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Motion Control Tips

Automation • Motion Control • Power Transmission

  • News
    • Industry News
    • Editor Blogs
    • Video
  • Controls
    • HMIs
    • PC-Based Controllers
    • PLCs + PACs
    • Stand-Alone Controllers
    • Software
  • Drives
    • Servo Drives
    • Stepper Drives
  • Encoders
    • Absolute Encoders
    • Incremental Encoders
    • Rotary Encoders
  • Mechanical
    • Bearings
    • Brakes + Clutches
    • Belt + chain
    • Couplings
    • Gears + Gearing
    • Lubrication
    • Shock + Vibration Mitigation
    • Springs + Rings + Seals
  • Linear
    • Actuators
    • Linear Motors
    • Linear Encoders
  • Motors
    • AC Motors
    • DC Motors
    • Brushless Motors
    • Gearmotors
    • Piezo Motors
    • Servo Motors
    • Stepper Motors
  • Systems
    • Conveyors + linear transport systems
    • Gantries + Stages
    • Rotary Tables
    • Grippers + End Effectors
    • Robotics
  • Networks
    • Connections + Sliprings
    • Fieldbuses
    • I/O
    • Sensors + Vision
  • FAQs
    • Motion Casebook
    • Motion Selection Guides
  • Suppliers
You are here: Home / FAQs + basics / What are negative-stiffness vibration isolators?

What are negative-stiffness vibration isolators?

May 30, 2019 By Danielle Collins Leave a Comment

Protecting sensitive equipment from harmful vibrations can be done with either passive or active isolation systems, with the choice often being made on price, simplicity, and the level of protection required. Although passive systems are typically simpler and lower cost, most passive designs can’t protect against the low-frequency vibrations caused by structural resonances. And active systems use actuators and sensors — which require external power — to counter vibrations, meaning they’re more expensive, more complex, and more prone to failures.

But one type of passive system, known as a negative-stiffness vibration isolator, can protect even the most sensitive equipment used in nanotechnology, microscopy, optical, and semiconductor applications from a wide range of vibration frequencies, including the very low-vibration disturbances caused by building structures, nearby traffic, and other ambient sources.


Negative-stiffness vibration isolators are classified as passive systems because they are purely mechanical, using a combination of springs and beam-columns to provide isolation from both vertical and horizontal motions caused by vibrations.


Q: What is a negative-stiffness mechanism (NSM)?

A: In a typical structure, an increase in force causes an increase in displacement. Negative-stiffness mechanisms are those that can, during some region of their force-displacement relationship, exhibit increasing displacement with decreasing force.

An example of a negative-stiffness mechanism is a two-bar structure under compression, as shown below.

Force (P/EAκ3) versus Displacement (δ) of a two-bar structure under compression.
Images credit: Comsol Inc.

Notice that between points A and B, displacement is increasing while force is decreasing. Thus, the structure’s stiffness is negative in that region.


Negative-stiffness vibration isolators consist of a horizontal isolator and a vertical isolator connected in series. To counter motions that involve rotation (pitch and roll), a tilt motion pad can also be connected in series with the horizontal and vertical isolators.

The horizontal isolator consists of two fixed-free vertical beams (columns) supporting a weight. The weight imparts both eccentric (off-axis) axial compressive load and a transverse bending load. This phenomenon is referred to as the “beam-column effect” and causes the lateral bending stiffness of the beams to decrease. In effect, the isolator is acting as a horizontal spring with a negative-stiffness mechanism.

vibration isolators
The horizontal isolator is designed to take advantage of the beam-column effect, allowing it to act like a negative-stiffness mechanism.
Image credit: Minus K Technology

Vertical motion is addressed using two horizontal flexures loaded in compression, which form a negative-stiffness mechanism. The flexures are supported at their outer ends and connected to a stiff spring at their inner ends. The stiffness of the isolator is determined by the design of the flexures and by their compressive load.

vibration isolators
Two flexures, fixed at their outer ends and connected to a spring at their inner ends, form a negative-stiffness mechanism that isolates equipment from vertical motion due to vibrations.
Image credit: Minus K Technology

The performance of an isolator is quantified by its transmissibility, which is a measure of how much vibration is transmitted through the isolator to the equipment compared to the amount of input vibration. (The inverse of transmissibility is isolation efficiency.) Negative-stiffness vibration isolators exhibit much better transmissibility than that of other passive systems, such as air-based isolation methods, and their transmissibility even exceeds that of most active isolation methods.

Negative-stiffness vibration isolators are typically chosen for their effectiveness at very low frequencies, but they offer other benefits as well. Because they’re based on flexures and springs, they don’t exhibit wear, and they can be made from a variety of metals for harsh or challenging environments, such as cleanrooms and vacuum chambers. And unlike other passive vibration isolators, negative-stiffness designs don’t generate heat, which can have detrimental effects for sensitive equipment and environments.

You may also like:


  • FAQ: What are mechanical, fluid-power, and elastomeric material dampers?

  • FAQ: Where do wire-rope isolators work best?

  • Shock and vibration mitigation by design not by mistake

  • Shock + vibration-damping components in motion applications

  • What are shock and vibration absorbers? A technical summary

Filed Under: FAQs + basics, Featured, Mechanical PT, Shock + Vibration Mitigation

Reader Interactions

Leave a Reply

You must be logged in to post a comment.

Primary Sidebar

POWER TRANSMISSION REFERENCE GUIDE

DESIGN GUIDE LIBRARY

“motion
Subscribe Today

RSS Featured White Papers

  • Specifying electric rodless actuators: Ten tips for maximizing actuator life and system performance
  • The truth about actuator life: Screw drive survival
  • Top Ten Tips: How to specify electric rod-style actuators for optimal performance, reliability and efficiency

Footer

Motion Control Tips

DESIGN WORLD NETWORK

Design World Online
The Robot Report
Coupling Tips
Linear Motion Tips
Bearing Tips
Fastener Engineering.

MOTION CONTROL TIPS

Subscribe to our newsletter
Advertise with us
Contact us
About us
Follow us on TwitterAdd us on FacebookAdd us on LinkedInAdd us on YouTubeAdd us on Instagram

Copyright © 2022 · WTWH Media LLC and its licensors. All rights reserved.
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media.

Privacy Policy | RSS